231

Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress

Tardieu, F., (2012). Any trait or trait-related allele can confer drought tolerance: Just design

the right drought scenario. J. Exp. Bot., 63, 25–31.

Thap, G., Dey, M., Sahoo, L., & Panda, S., (2011). An insight into the drought stress induced

alterations in plants. Biol. Plant., 55, 603–613.

Theocharis, A., Clément, C., & Barka, E. A., (2012). Physiological and molecular changes in

plants grown at low temperatures. Planta, 235, 1091–1105.

Thippeswamy, M., Chandraobulreddy, P., Sinilal, B., Shivakumar, M., & Sudhakar, C.,

(2010). Proline accumulation and the expression of D1-pyrroline-5-carboxylate synthase

in two safflower cultivars. Biol. Plant., 54, 386–390.

Thirumalaikumar, V. P., Devkar, V., Mehterov, N., Ali, S., Ozgur, R., Turkan, I., Mueller-

Roeber, B., & Balazadeh, S., (2018). NAC transcription factor JUNGBRUNNEN 1 enhances

drought tolerance in tomato. Plant Biotechnol. J., 16, 354–366.

Thomas, J. C., Sepahi, M., Arendall, B., & Bohnert, H. J., (1995). Enhancement of seed

germination in high salinity by engineering mannitol expression in Arabidopsis thaliana.

Plant Cell Environ., 18, 801–806.

Todaka, D., Nakashima, K., Maruyama, K., Kidokoro, S., Osakabe, Y., et al., (2012).

Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of

internode elongation and induces a morphological response to drought stress. Proc. Natl.

Acad. Sci. USA, 109, 15947–15952.

Török, Z., Goloubinoff, P., Horvath, I., Tsvetkova, N. M., Glatz, A., Balogh, G., Varvasovszki,

V., et al., (2001). Synechocystis HSP17 is an amphitropic protein that stabilizes heat-

stressed membranes and binds denatured proteins for subsequent chaperone mediated

refolding. Proc. Nat. Acad. Sci. USA, 98, 3098–3103.

Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., & Voytas,

D. F., (2009). High-frequency modification of plant genes using engineered zinc-finger

nucleases. Nature, 459, 442.

Tran, L. S., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita,

M., et al., (2004). Isolation and functional analysis of Arabidopsis stress inducible NAC

transcription factors that bind to a drought responsive cis-element in the early responsive to

dehydration stress 1 promoter. Plant Cell, 16, 2481–2498.

Trujillo, L., Menendez, C., Ochogavia, M. E., Hernandez, I., Borras, O., Rodriguez, R., Coll,

Y., et al., (2009). Engineering drought and salt tolerance in plants using SodERF3, a novel

sugarcane ethylene responsive factor. Biotechnol. Apl., 26, 168–171.

Ullah, A., Sun, H., Yang, X., & Zhang, X., (2017). A novel cotton WRKY gene, GhWRKY6­

like, improves salt tolerance by activating the ABA signaling pathway and scavenging of

reactive oxygen species. Physiol. Plant., 162, 439–454.

Valliyodan, B., & Nguyen, H., (2006). Understanding regulatory networks and engineering

for enhanced drought tolerance in plants. Curr. Opin. Plant Biol., 9, 1–7.

Van Ha, C., Esfahani, M. N., Watanabe, Y., Tran, U. T., Sulieman, S., Mochida, K., Van, N. D.,

& Tran, L. S. P., (2014). Genome-wide identification and expression analysis of the CaNAC

family members in chickpea during development, dehydration and ABA treatments. PloS

One, 9, e114107.

Van, T. N., Rolloos, M., Pinas, J. E., Henkel, C. V., Augustijn, D., Hooykaas, P. J., & Van,

D. Z. B. J., (2017). Enhancement of Arabidopsis growth characteristics using genome

interrogation with artificial transcription factors. PLoS One, 12, e0174236.