231
Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress
Tardieu, F., (2012). Any trait or trait-related allele can confer drought tolerance: Just design
the right drought scenario. J. Exp. Bot., 63, 25–31.
Thap, G., Dey, M., Sahoo, L., & Panda, S., (2011). An insight into the drought stress induced
alterations in plants. Biol. Plant., 55, 603–613.
Theocharis, A., Clément, C., & Barka, E. A., (2012). Physiological and molecular changes in
plants grown at low temperatures. Planta, 235, 1091–1105.
Thippeswamy, M., Chandraobulreddy, P., Sinilal, B., Shivakumar, M., & Sudhakar, C.,
(2010). Proline accumulation and the expression of D1-pyrroline-5-carboxylate synthase
in two safflower cultivars. Biol. Plant., 54, 386–390.
Thirumalaikumar, V. P., Devkar, V., Mehterov, N., Ali, S., Ozgur, R., Turkan, I., Mueller-
Roeber, B., & Balazadeh, S., (2018). NAC transcription factor JUNGBRUNNEN 1 enhances
drought tolerance in tomato. Plant Biotechnol. J., 16, 354–366.
Thomas, J. C., Sepahi, M., Arendall, B., & Bohnert, H. J., (1995). Enhancement of seed
germination in high salinity by engineering mannitol expression in Arabidopsis thaliana.
Plant Cell Environ., 18, 801–806.
Todaka, D., Nakashima, K., Maruyama, K., Kidokoro, S., Osakabe, Y., et al., (2012).
Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of
internode elongation and induces a morphological response to drought stress. Proc. Natl.
Acad. Sci. USA, 109, 15947–15952.
Török, Z., Goloubinoff, P., Horvath, I., Tsvetkova, N. M., Glatz, A., Balogh, G., Varvasovszki,
V., et al., (2001). Synechocystis HSP17 is an amphitropic protein that stabilizes heat-
stressed membranes and binds denatured proteins for subsequent chaperone mediated
refolding. Proc. Nat. Acad. Sci. USA, 98, 3098–3103.
Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., & Voytas,
D. F., (2009). High-frequency modification of plant genes using engineered zinc-finger
nucleases. Nature, 459, 442.
Tran, L. S., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita,
M., et al., (2004). Isolation and functional analysis of Arabidopsis stress inducible NAC
transcription factors that bind to a drought responsive cis-element in the early responsive to
dehydration stress 1 promoter. Plant Cell, 16, 2481–2498.
Trujillo, L., Menendez, C., Ochogavia, M. E., Hernandez, I., Borras, O., Rodriguez, R., Coll,
Y., et al., (2009). Engineering drought and salt tolerance in plants using SodERF3, a novel
sugarcane ethylene responsive factor. Biotechnol. Apl., 26, 168–171.
Ullah, A., Sun, H., Yang, X., & Zhang, X., (2017). A novel cotton WRKY gene, GhWRKY6
like, improves salt tolerance by activating the ABA signaling pathway and scavenging of
reactive oxygen species. Physiol. Plant., 162, 439–454.
Valliyodan, B., & Nguyen, H., (2006). Understanding regulatory networks and engineering
for enhanced drought tolerance in plants. Curr. Opin. Plant Biol., 9, 1–7.
Van Ha, C., Esfahani, M. N., Watanabe, Y., Tran, U. T., Sulieman, S., Mochida, K., Van, N. D.,
& Tran, L. S. P., (2014). Genome-wide identification and expression analysis of the CaNAC
family members in chickpea during development, dehydration and ABA treatments. PloS
One, 9, e114107.
Van, T. N., Rolloos, M., Pinas, J. E., Henkel, C. V., Augustijn, D., Hooykaas, P. J., & Van,
D. Z. B. J., (2017). Enhancement of Arabidopsis growth characteristics using genome
interrogation with artificial transcription factors. PLoS One, 12, e0174236.